
Tools for Describing the Reference Architecture for Space Data Systems

Peter Shames’, Takahiro Yamada’

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

21nstitute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan

1

I NTROD UCTlO N

lnteroperability of space data systems is of great concern to Space Agencies because sharing or reusing

interoperable resources among multiple projects and multiple Agencies can reduce the cost of developing and

operating space data systems. However, an on-going problem is that each space data system often has a

different architecture and therefore the elements of one system cannot be easily used by other systems.

Moreover, the method of describing the architecture is usually different from system to system and it is

sometimes difficult to even describe the problems associated with interoperability among systems.

developed interoperable standards and various standard architectures to describe space data systems.

CCSDS is an international, consensus based, space data system standards organization which has as

members NASA, ESA, JBXA, and all the other major space agencies. Recognizing that there are already

different architectures describing parts of space data systems, the approach taken by the CCSDS Systems

Architecture Working Group (SAWG) was to generate a reference architecture that can be used as an end-to-

end framework to describe various architectures in a coherent way. This reference architecture is known as the

Reference Architecture for Space Data Systems (RASDS). Using this reference architecture, architectures of

different space data systems can be described in a standard way so that the commonality and differences

among the systems can be easily understood.

To cope with this situation, the Consultative Committee for Space Data Systems (CCSDS) [I] has

The next step is to develop a formal method for describing architectural information so that models of

specific system architectures can be generated and manipulated using generic software tools and accessed

and used by various pieces of application software. We anticipate great cost savings from describing

architectures in a standard way, from using common tools to design systems, and from being able to share

models describing these systems among diverse teams.

OVERVIEW OF THE REFERENCE ARCHITECTURE

Space data systems are complex entities, which may be viewed from various aspects. In order to

describe the architecture of a space data system in an adequate way, RASDS uses multiple Views to present

the architecture of a space data system, each view focusing on one aspect of the system. The Views used by

RASDS are derived from the viewpoints defined in the Reference Model of Open Distributed Processing (RM-

ODP) [2] but they are slightly modified from the RM-ODP viewpoints so that they can better represent the

concerns of space data systems. The views used in RASDS range from the organizational to the physical

component and from abstract representation to concrete implementations, they include: Enterprise,

Connectivity, Functional, Information, and Communications.

Each View is an abstraction that uses a selected set of architectural concepts and structuring rules, in

order to focus on particular aspects of a space data system. Each of the Views describes the space data

system in question as a set of Objects, the interactions among them, and the concerns that must be addressed

for that viewpoint. An Object is an abstract model of an entity in the system. As shown in Figure 1, each Object

is described with its core functions and its interfaces with other Objects. Also, a set of concerns is associated

with each Object.

RASDS uses the five Views that are explained in the subsequent sections to describe the architecture of

space data systems. The user may decide not to use all of these five Views to describe a particular system if

the system can be characterized with less than five Views. The user may also choose to combine Views using

the basic concepts defined in RASDS if it is impossible to capture all the important aspects of the system with a

single pre-defined View.

I

Service Interfaces:
How services are
requested & supplied

Management Interfaces:
How objects are configured
controlled, and reported upon

Core functions: How external elements
Decision are controlled

Concerns: Action
Processing Issues

Resources
Policies

Figure 1. Representation of Objects

ENTERPRISE VIEW

The motivation for the Enterprise View is that missions often have complex organizational relationships

involving spacecraft, instruments, ground systems, scientists, staff, and contractors that are distributed among

multiple organizations (space agencies, science institutes, companies, etc). The Enterprise View is used to

address these aspects of space data systems and the relevant concerns that arise, Le. polices, contracts,

agreements, organizational interfaces and, from a security perspective, trust relationships.

The Enterprise View is depicted as a set of Enterprise Objects and interactions among them, where

each Object is an abstract model of an organization or facility involved in a space data system (such as a space

agency, a university, a government institute, a private company, or a tracking network). A group of Enterprise

Objects that plays some role in a space data system (such as a community, a committee, or a joint project) can

also be an Enterprise Object.

Figure 2 shows an example of an Enterprise View for Mission A, in which Agency P builds and operates

a spacecraft, Agency Q provides tracking support and Science Institute R performs scientific data analysis.

CONNECTIVITY VIEW

/ - - - - - - - - - -
/

/ Data Utilization - - - - - - - - -
Agreement Science Institute R rms data ar

J
& I

1 - . * - * * * 1 1 - - - -

/
/

I
I - - - - - - - - - -

/
/

4
4 - - - - - - - - -

Agency P: builds an tes a spacecraft
I

I \
f

I \ ~~ *_ eA *% - *

\ I
”> ” & x_ -~ - L \ r * / _ * _ * _ l - m - - - -

\
\ j

Support Service V Agency Q: provides ng service
Agreement I

8

lysis service

Figure 2. Example of Enterprise View (Mission A)

The motivation for the Connectivity View is that we have system elements that are in motion through

space and consequently connectivity issues associated with pointing, scheduling, long round trip light times,

and low signal-to-noise ratios, all of which must be dealt with by special protocols and functionality. The

Connectivity View is used to address all of these physical and performance aspects of space data systems.

This is a concrete view of system elements, used in conjunction with more abstract views, such as the

Functional View to show allocation of functions, and with more concrete views, such as the Communications

View, to show the protocols that are required to deal with the link and environmental characteristics.

The Connectivity View describes the physical elements, how they are connected, and the physical

environment of a space data system. The Connectivity View is depicted as a set of Nodes and Links. A Node is

an abstract model of a physical entity or component used in a space data system, which is connected to other

Nodes by a Link of some sort. A Node represents a system (such as a spacecraft, a tracking system or a

control system) or an individual physical element of a system (such as an instrument, a computer, or a piece of

equipment). A Node may be composed of other Nodes. A Link is a physical connection between or among

Nodes. A Link may be a RF link, a wired link, or a network of some kind (such as the Internet, a LAN, or a bus).

Both Nodes and Links have associated behavioral properties, which include performance, location, and

possibly motion. The entire set of Nodes and Links is embedded in a physical environment, which has its own

properties and behaviors.

Figure 3 shows Nodes and Links used for Mission A, as shown in Figure 2.

I - # I

f. I A

/ a SIC Control
r

Figure 3. Example of Connectivity View (Mission A)

FUNCTIONAL VIEW

The motivation for the Functional View is to separate functional elements and their logical interactions

from the engineering concerns of where functions are housed, how they are physicalty connected, which

protocols are used, or which technology is used to implement them. The Functional View is an abstract view

used to address these aspects of space data systems.

interact with each other. The Functional View is depicted as a set of Functional Objects and the logical

associations among them. A Functional Object is an abstract model of a functional entity that performs actions

and generates or processes data in a space data system. An Object that only moves data is called a

Communications Object and is treated in the Communications View. A Functional Object may be realized as

either software or hardware. A Functional Object may be composed of other Functional Objects. A Functional

Object may use services provided by other Functional Objects, provide services to other Functional Objects, or

perform actions jointly with other Functional Objects. These kinds of interactions are described in the Functional

View.

The Functional View describes the functional structure of a space data system and how functions

Figure 4 shows some of the Functional Objects used for Mission A together with the logical associations

between them (shown with dotted lines).

.
**

Tracking Data Management Spacecraft
Analysis

Figure 4. Example of Functional View (Mission A)

Functional Objects actually are implemented in software or hardware and redise in physical entities (i.e.,

Nodes) of the system. Overlaying the Functional View on the Connectivity View of the same system will show

the distribution of Functional Objects among Nodes. Such an example is shown in Figure 5, in which the

Functional Objects from Figure 4 are overlaid on the Connectivity View from Figure 3. The allocation of

Functional Objects to Nodes is a part of the system design trade space. The combination of these two views,

and specification of the behavior of the elements, allows us to start to explore the end-to-end performance of

the system.

Science Spacecraft

ce Center

Tracking Station

SIC Control Center

Ground
Link

Figure 5. Example of Functional and Connectivity Views (Mission A)

INFORMATION VIEW

The motivation for the Information View is to clarify relationships among data that are passed among the

Functional elements, and to define their structures, relationships, and policies. Data are managed (that is,

stored, located, accessed, and distributed) by information infrastructure elements. The Information View is used

to address these aspects of space data systems.

The Information View describes space data systems from the perspective of the Information Objects that

are exchanged among the Functional Objects. It includes descriptions of Information Objects (their structure

and syntax), information about the meaning and use of these Objects (contents and semantics), the

relationships among Objects, rules for their use and transformation, and policies on access. It also provides

descriptions of the Distributed Information Infrastructure (DII) that supports the location, access, delivery, and

management of these Information Objects. Finally, this View and the Functional View shows the relationship

between the Information Objects and the Functional Objects that manipulate and exchange them.

Figure 6. Example of Information and Functional Views (Mission A)

Figure 6 shows the relationship between some typical Functional Objects and the Information Objects

that they exchange. This example shows a mission planning flow for Mission A, where the green objects are

Functional Objects and the striped blue objects are Information Objects

COMMUNICATIONS VI E W

The motivation for the Communications View is to define the layered sets of communications protocols

that support communications among the functional elements. These protocols are needed to meet the

requirements imposed by the connectivity and operational challenges revealed in the Connectivity View, which

describes the physical configuration and operating environment of the system. The Communications View

describes the engineering solutions to these space data systems challenges and is a key area of technical

focus within CCSDS. The Communications View describes the mechanisms for information transfer among

physical entities (i.e., Nodes) in a space data system. The Communications View is depicted as a set of

Communications Objects and interactions among them. A Communications Object is an abstract model of a

communications protocol that may be realized as either software or hardware. Communications Objects

support information transfer between or among Functional Objects over Links (Le., physical connections

between or among Nodes). A stack of Communications Objects is usually used to support information transfer

from a Functional Object to another Functional Object. In the communications stack, the topmost

Communications Object directly connects to the Functional Object, and the lowest Communications Object

handles the Link.

The selection of Communications Objects for a Link heavily depends on the characteristics of the

Functional Objects, the Nodes, the physical Link and the space environment. Therefore, it is useful to show the

Functional Objects, the Nodes and the Link together with the Communications Objects in a hybrid

Communications View. Such an example is shown in Figure 7, in which the Communications View

Science Spacecraft Tracking Station SIC Control Center

U
Space Link Ground Link

Figure 7. Example of Communication, Functional and Connectivity Views (Mission A)

(Communications Objects) are shown with a simplified Functional View (Functional Objects) overlaid on the

Connectivity View (Nodes and Links).

METHOD AND TOOL FOR DESCRIBING ARCHITECTURES

The architecture of a space data system is essentially a model of a complex system (of systems) viewed

from different points of interest. The underlying element that is being created during system architecture

development and design is this model. A formal method to describe these models, and agreed means for

storing and exchanging these models, is also needed, and this is the focus for our current activities.

Using the selected method, the architecture of space data systems will be formally described with a set

of Views, where each consists of a set of Objects, their characteristics, behaviors, and interactions and the

relationships among them. These formal methods will enable sharing and exchange of models of system

architectures among different organizations or teams, and eliminate the need of re-generating the same

information for different purposes, which happens quite frequently in actual system development.

Together with the formal method for describing architectures, CCSDS plans to develop a modeling

environment, based on existing commercial or academic tools, for generation and manipulation of RASDS

architectures. With this approach, architectural models of a space data system will be generated by the

architect or developer using the graphical user interface of the tool, and then electronically delivered to the

engineering teams who use the information for building, evaluating, testing or operating the system. For

example, architectural information generated by the architect can be directly fed to a generic simulator, which

simulates the behavior of the system using the received information. The same model can also be fed to

software tools used for detailed design or management of the system, in which the process will be to elaborate

and provide added detail to the original model, rather than to re-create it at each step.

Before developing a method, CCSDS identified high-level requirements for the method and tool:

1) We need a meta-model or model language that is independent of specific tool environments and

implementations;

2) We need a tool suite with a graphical interface that enables creation, manipulation, display,

archiving, and versioning of meta-models, component and connector type templates, and instance models;

3) The tool shall support development of machine readable, portable architecture meta-model for

RASDS;

4) The tool shall support development of instance models for specific space data systems

deployments.

EVALUATION OF CANDIDATE METHODS AND LANGUAGES

In developing the formal method for describing architectures, CCSDS wished to utilize an existing

method or language, if at all possible, so that software tools developed for that methodllanguage could be used

with minimum customization. The model or language must provide a simple and clear solution to each of the

following questions:

- How are the Views defined in the RASDS described?

- How are the Objects defined in the RASDS Views described?

- How are the properties and behavior of each of the Objects described?

- How are the relationships between Objects (which may belong to different Views) described?

- How are the properties of the interactions between Objects described?

Using the above criteria, several candidate methods and languages were evaluated, which included

UML (Unified Modeling Language) Versions 1.4 and 2.0 [3], SysML (Systems Modeling Language) [4], CIM

(Common Information Model) [5], xADL (XML Architecture Description Language) [6], and EDOC (Enterprise

Distributed Object Computing) [7]. A tentative agreement to use SysML as our basis was reached.

SysML is being developed by a consortium called the SysML Partners by customizing UML 2.0 to

support the specification, analysis, design, verification and validation of complex systems that may include

hardware, software, data, personnel, procedures, and facilities. Information about this group, which is jointly

chartered by OMG and INCOSE, may be found on their web site [4], along with the current specification. The

SysML Partners, founded in May 2003, are collaborating to define a modeling language for systems

engineering applications, called Systems Modeling LanguageTM (SysMLTM). SysML will customize and extend

UML 2 to support the specification, analysis, design, verification and validation of complex systems that may

include hardware, software, data, personnel, procedures, and facilities. The partners are roughly half from the

major aerospace companies and half from the major UML tool vendors.

This effort was motivated by the systems engineer need for a standard language for analyzing,

specifying, designing, verifying and validating systems. We have lacked a broad based standard that supports

general purpose systems modeling needs and satisfies a broad set of modeling requirements (behavior,

structure, performance, . . .) . The SysML approach integrates HNV and SNV disciplines, and it is scalable,

adaptable to different SE domains, and will be supported by multiple commercial tools. SysML augments the

basic UML 2 abilities to describe use cases, classes, components, actions, activities, and state machines. It

adds the ability to model in detail both continuous and discrete behavior and methods for modeling

requirements, parametrics, and validation.

MAPPING RASDS INTO SYSML

SysML provides all of the capab es to model the RASDS viewpoints and adds some additional

functionality that we had not yet required. Key extensions that will prove useful are the ability to model system

behavior and to model requirements and traceability to implementation. These were not considered in the

RASDS work, but will be valuable in actual use of these tools in real projects.

RASDS uses Viewpoints to expose different concerns of a single system whereas SysML uses specific

diagrams to capture system structure, behavior, parameters and requirements. There is no simple one for one

mapping from RASDS into SysML because several different SysML diagrams, focused on different object

classes and relationships, may be usefully applied to any given RASDS Viewpoint. It will be necessary to

extend SysMb Views to define the relationships between RASDS Viewpoints and SysML Diagrams. However,

SysML will support more accurate fine-grained modeling of structure, relationships and behavior than was

expected of RASDS and this is a real benefit.

The initial mapping of SysML diagrams onto RASDS views follows, where the primary common element

is the mapping of various RASDS Objects into SysML components and collaborations.

Enterprise

Organizational component & collaboration diagrams

Use case, interaction overview diagrams

Requirements & constraints for rules, policies & agreements

Connectivity

Physical component, composition, collaboration & class diagrams

Parametric diagram for physical link characterization

Functional

Logical component, collaboration & class diagrams

Activity, state chart, parametric, & timing diagrams

Informational

Information class & parametric diagrams

Communication

Protocol component & collaboration diagrams

State machine, sequence, activity & timing diagrams

We do not have room in this paper to show the initial mappings of all of these diagrams, but our analysis,

validated with the SysML Partners, is that all of the RASDS elements, relationships, views and concerns can be

mapped using SysML. In order to provide the needed modeling environment we will need to construct a set of

RASDS meta-classes with associated rules and to provide a library of stereotyped components that can be

assembled and customized by the end users This is expected to be a significant but workable approach, given

the anticipated availability of commercial tools that support the SysML methods.

CONCLUSION

This paper has briefly presented the Reference Architecture for Space Data Systems (RASDS) that is being

developed by the CCSDS Systems Architecture Working Group (SAWG). The SAWG generated some sample

architectures (spacecraft onboard architectures, space link architectures, cross-support architectures) using

this RASDS approach, and RASDS was proven to be a powerful tool for describing and relating different space

data system architectures.

The European Space Agency (ESA), in a European technology harmonization of Ground Software

System, is now applying the RASDS approach. RASDS will provide high level views and XASTRO [8], which is

an ESA project to develop a formal method for describing systems based on xADL and UML 1.4, will be used

as the method to describe the ground segment reference architecture.

Many aspects of space data systems that are considered in the RASDS have not been addressed in this

brief paper, but will be covered in the CCSDS Recommendation on RASDS, which will be published this year.

These include security, system management, engineering details, lifecycle issues, and other aspects of

designing and building real systems.

CCSBS is also developing a formal method for describing architectures that facilitates generation,

manipulation and sharing of architectural information electronically using software tools. SysML has been

selected as the suitable candidate and mapping rules for representing RASDS with SysML are being developed

under a liaison relationship between CCSDS and the SysML Partners.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute

of Technology, and was sponsored by the Japan Aerospace Exploration Agency (JAXA) and the National

Aeronautics and Space Administration (NASA). The authors wish to thank the members of the CCSDS System

Architecture Working Group for their valuable contribution to the development of the RASDS presented in this

paper.

REFERENCES

[I] http://www.ccsds.org

[2] Information Technology - Open Distributed Processing - Reference model: Overview, International

Standard, ISO/IEC 10746-1, December 1998.

[31 h t t p : //www . om g . o rg /u m I/

[4] http://www.sysml.org

[5] http://www.dmtf.org/standards/cim/

[6] http://www.isr.uci.edu/projects/xarchuci/
[7] http://www.omg.org/technology/documents/formal/edoc. htm

[8] N. Lindman, et.al., XASTRO - XML Based Space Data Exchange Framework, SpaceOps 2002, October

2002.

http://www.ccsds.org
http://www.sysml.org
http://www.dmtf.org/standards/cim
http://www.isr.uci.edu/projects/xarchuci
http://www.omg.org/technology/documents/formal/edoc

